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ABSTRACT
This paper investigates the impact of imposing a cost on morpho-
logical complexity in the co-evolution of control policy (behaviour)
and sensory configuration (morphology) for robot teams in different
environments. Namely, we investigate (1) evolving lower morpho-
logical complexity without sacrificing behavioural competence in a
given environment and (2) the relationship between selection pres-
sure for morphological complexity and environmental difficulty.
Two experiment sets use direct-encoded Neuro-evolution to evolve
team controller-morphology couplings in three environments of
increasing difficulty. A single Task Performance objective is max-
imised in the first set of experiments, while both Task Performance
and a Morphological Simplicity objective (that is, a cost of complex-
ity) are maximised in the second set. Overall a cost of complexity
was found to be beneficial for Multi-Robot System design. Results
indicate that, in a given environment, evolution with a cost on
complexity produces teams which are morphologically simpler and
as behaviourally competent as teams evolved without a complexity
constraint. Additionally, with a cost of complexity, evolution main-
tained a constant selection pressure for morphological complexity
across all environments.

1 INTRODUCTION
A general topic of interest in the field of Evolutionary Robotics (ER)
[17] is the co-evolution of controller and morphology. Tradition-
ally, a control policy is evolved for a fixed sensory configuration
(morphology) that the designer pre-specifies [58, 59]. While this
unburdens the designer from having to linearly model complex
behaviours [24], the optimal morphology is often also impractical
to ascertain a priori. This can result in unnecessary expenditure on
both design and physical parts (such as unneeded sensors) [28]. Re-
search on the coupled dynamics of controller, morphology and the
environment indicates that controller-morphology co-evolution
with a cost imposed on morphological complexity can result in
evolved robots which are both morphologically cheaper, and as
behaviourally competent, as robots evolved without a complexity
constraint [4, 5].

For problemswhich are better solved by co-operative robot teams
(Multi-Robot Systems / MRS) over individual robots, such as toxic
waste cleanup [49], minefield clearing [27] and search-and-rescue
missions [43], these improvements to the design process are par-
ticularly desirable. As the control policy and morphology of each
robot in a MRS contributes to the emergence of the system’s co-
operative behaviour, it is even more impractical to make a priori
design decisions.

While a significant amount of work has been done on co-evolving
behaviour and morphology for individual robots [5, 8, 11, 20, 23, 29,

30, 36, 37, 50, 53] much less work has been done on co-evolving be-
haviour and morphology for co-operative robot teams [2, 10, 28, 47],
and - to the best of our knowledge - no work has been done on the
co-evolution of behaviour and morphology for robot teams with
a constraint on morphological complexity. A barrier to this area
of research is the fact that standard ER methods - most notably
Neuro-Evolution of Augmenting Topologies (NEAT) [55] - tend
to be designed for single-objective optimisation, whereas optimis-
ing behaviour and morphological complexity is a multi-objective
problem requiring convergence to a set of trade-off solutions.

This study contributes to research on automated controller-
morphology design methods for MRS solutions to collective be-
haviour tasks. Specifically, we investigate research on constraining
morphological complexity without sacrificing behavioural com-
petence, and moreover how selection pressure for morphological
complexity changes across environments. We equate competent
behaviour with optimal performance at collective gathering [7], a
benchmark task in co-operative robotics [17]. Collective Gather-
ing requires a team of robots to locate and push a set of resources
(blocks) to a gathering zone. We define co-operation as the number
of robots required to push a block (based on block-size), and task
difficulty as a function of both number of blocks in the environment
and degree of co-operation.

As in related work, each robot in the team is controlled by an
Artificial Neural Network (ANN) and morphologically comprised
of a sensory configuration (modeled after the Khepera [39] robot)
[28, 58, 59], both of which are evolved by NEAT-M, an extended
NEAT implementation which genotypically encodes the morphol-
ogy in addition to the controller [28]. We define task performance
as number of gathered blocks and morphological complexity as a
function of number of sensors as well as the FOV and Range of each
sensor. To impose a cost (constraint) on morphological complexity
during evolution, we integrate NEAT-M with the NEAT-MODS [1]
technique for multi-objective optimisation with NEAT. Namely,
the integrated method is used to both maximise task performance
and minimise morphological complexity, converging to a pareto-
optimal [14] set of solutions providing different compromises be-
tween morphological complexity and task performance. Due to the
high computational complexity of evolving heterogeneous teams
(different controller-morphology couplings) as reported in related
work [28], this study evolves behaviourally and morphologically
homogenous teams (same controller-morphology coupling across
team) for all experiments.

We hypothesise the following:
• H0: With a cost on morphological complexity, evolution pro-
duces teams which are less morphologically complex, but at
least as competent for task performance, as teams evolved with
no cost on morphological complexity.



Figure 1: Left: Khepera-III morphology which the simulated robot model we employ is based on [39]. Middle: The simulated robot model. A conical
field-of-view protrudes from each sensor [28]. Sensory input is received by an Artificial Neural Network controller which actuates left and right turning of the
wheel. Right: Example simulation of collective gathering. Robots attempt to locate and cooperatively push the yellow blocks to the rectangular gathering zone
at the bottom of the environment. The colour of a conical field-of-view corresponds to a different type of sensor in use.

• H1: Evolution will not respond to increased environmental
difficulty by increasing selection pressure for morphological
complexity.

Both hypotheses are motivated by the results of related work.
Namely, the first hypothesis is supported by the results of (author?)
[4, 5] which demonstrate that evolution with a cost of complexity
can produce individual robots which are morphologically simpler
and as behaviourally competent as robots evolved with no complex-
ity constraint. A crucial difference, however, is that we are evolving
teams rather than individual robots. Support for the second hy-
pothesis is provided by similar work on co-adaptation of controller
and morphology for robot teams. Namely, it has been found that
increased environmental difficulty does not necessarily imply a
need for greater morphological complexity [58, 59]. These studies
have not, however, explored this relationship with a cost imposed
on morphological complexity.

2 BACKGROUND
2.1 Neuro-evolution of Augmenting Topologies

(NEAT)
Neuro-evolution [62] combines the relative strengths of Artificial
Neural Networks [24] and Evolutionary Algorithms [19] to provide a
robust parallel search of the space of candidate network solutions
for a given problem. As such, it is an effective controller design
technique for non-linear problem spaces where other common
approaches fail [24].

NEAT [55] is a neuro-evolution method which evolves both con-
nection weights and topology, based on three principal ideas: his-
torical marking, speciation and complexification. Historical Marking
is an ordered numbering system for topological innovations during
evolution. Whenever a parent genotype is mutated, a record (inno-
vation number) is kept of that mutation. This facilitates topological
comparison of networks without the need for computationally-
expensive graph traversal. Speciation protects new topological in-
novations by grouping homologous ANNs into species using a
compatibility function. Solutions compete and reproduce within
their species rather than with the population at large, affording

young solutions the chance to refine over time. Complexification is
the idea that ANN solutions should start off with minimal topolo-
gies and grow incrementally, complexifying over the number of
epochs towards a desirable solution.

In addition to applications of NEAT in research areas such as au-
tonomous vehicle control [26, 41, 44, 48, 54, 57] and games develop-
ment [32, 51, 52], it is particularly well-suited for the non-linearity
of problems in Evolutionary Robotics [17] and the related fields of
collective robotics [31] and swarm robotics [6]. Within these fields,
NEAT has been used for research on the evolution of co-operation
[40, 56], communication [22, 61], predator-prey behaviour [45, 46],
morphological complexity [3, 5, 9] as well as embodied cognition
[13].

2.2 Evolutionary Multi-objective Optimisation
A multi-objective problem (MOP) consists of multiple (often con-
flicting) objectives that must be optimised simultaneously, yielding
a set of trade-off solutions among the objectives [14]. The set is
generated according to the notion of Pareto Optimality, which states
that any solution to a MOP is pareto optimal if none of the objective
functions can be better optimised without degrading another of
the objective functions in value. Since different solutions might
perform better for different subsets of the objectives, the principle
of dominance is used for comparison of solutions. A solution x*
dominates another solution x if the following conditions hold [18]:

(1) the solution x* is not worse than x with respect to all objec-
tives;

(2) the solution x* is strictly better than x with respect to at least
one objective.

Thus, no two solutions in the final set of trade-off solutions (the
pareto front) dominate one another, but every solution on the pareto
front dominates every solution outside of the pareto front. While
mathematical programming has historically been used to solve
MOPs [25, 38], EAs are often a superior alternative. EAs relax the
contextual requirement of differentiable objective functions, pro-
vide better handling of concavity on the pareto front, and can
produce the pareto-optimal set in a single evolutionary run [14].
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2.3 Multi-Objective NEAT
A number of problems which initially appear well-suited to neuro-
evolution, notably within the field of Evolutionary Robotics [17],
later prove to require the optimisation of multiple conflicting ob-
jectives. Several approaches to a multi-objective implementation
of NEAT have been reported in the literature, but most come at
the cost of discarding core innovations of the original algorithm to
make room for conflicting multi-objective procedures [1].

NEAT’s speciation mechanism is particularly difficult to pre-
serve in a multi-objective implementation; NSGA-II [16] and other
state-of-the-art EMOA techniques sub-divide the population based
on metrics such as non-domination, while NEAT sub-divides the
population into species based on topological homology. Here we de-
scribe several approaches to multi-objective NEAT which attempt
to preserve the core features of NEAT.

2.3.1 Weighted Fitness Function. Anaive approach to optimising
multiple objectives with NEAT is to design the fitness function as a
weighted function of the multiple objectives [14], without having
to modify any core features of NEAT. This approach, however, does
not take into account trade-offs among the objectives, making it
impossible to produce a pareto-optimal set of solutions.

2.3.2 NEAT-PS. The NEAT-PS [60] approach optimises separate
objective functions but transforms each individual’s score into a
single scalar value (based on Pareto Strength as is done in the SPEA-II
[63] EMOA). This scalar value is treated as a fitness score and passed
directly to NEAT in the usual manner, with no other modifications
to the algorithm. However, since NEAT is non-elitist by design
[55], (author?) [1] point out that this approach does not guarantee
monotonic evolution of all objectives. While elitism allows both
child and parent solutions to propagate to the next generation, non-
elitism only selects child solutions [16]. As such, parent solutions
in NEAT-PS which should have remained in the pareto-optimal set
stand a chance of being lost during evolution.

2.3.3 Auxiliary Diversity Objective. A number of studies have
modified NEAT for multi-objective optimisation by replacing spe-
ciation with an auxiliary genotypic diversity objective which in-
centivises topological diversity in the network solution space (in
similiar spirit to speciation) [33, 35, 42]. The population can thus
be sub-grouped into a set of pareto fronts (rather than species) via
non-dominated sort, where each individual in the front with the
lowest index dominates all other fronts (as in the NSGA-II [16] al-
gorithm). However, the reliability of this approach as a replacement
for speciation has not been verified quantitatively, nor have any
efforts been made to generalise the approach into a generic multi-
objective NEAT method. Another possible drawback of an auxiliary
objective is increased dimensionality of the objective space [34].

2.3.4 NEAT-MODS. (author?) [1] recently developed a novel
approach to multi-objective NEAT which preserves speciation.
Based on NSGA-II, this method incorporates non-domination rank
and crowding distance into a modified version of NEAT’s selec-
tion process which ensures both genotypic diversity and elitism
in the context of pareto-optimality. NEAT-MODS has been quan-
tified against NEAT-PS and is intended to be used as a generic
multi-objective NEAT method [1].

3 METHODS
This section outlines the methods used for evolving solutions to
the collective gathering task. The first method, NEAT-M [28], pro-
vides the core model for co-evolving behaviour and morphology.
The second method, NEAT-M-MODS, extends this core model to
facilitate multi-objective optimisation.

3.1 NEAT-M
NEAT-M [28] follows the same core evolutionary steps as NEAT,
but rather than exclusively evolving a single controller genotype for
each individual in the population, it also evolves a direct genotypic
encoding of the morphology, which is in essence a sensory config-
uration. This is achieved by creating a relationship between the
controller and morphology, such that each (sensory) input node of
the controller contains a direct encoding of the parameter-set for a
corresponding sensor on the morphology. Namely, the parameter-
set for each sensory input node includes a Sensor Type, Field of
View, Range, Bearing, and Orientation. To facilitate evolution of the
sensory configuration, there is a corresponding genetic operator
for each of these values; namely:Mutate Field of View, Mutate Range,
Mutate Bearing, and Mutate Orientation. Additionally, speciation is
adapted to account for sensory evolution [28]. If, for instance, evolu-
tion discards an input node from the controller, the corresponding
sensor is removed from the morphology. A more thorough treat-
ment of NEAT-M is provided by (author?) [28].

3.2 NEAT-M-MODS
The NEAT-M-MODS method we introduce combines the controller-
morphology co-evolution facilitated by NEAT-M [28] with the
NEAT-MODS [1] approach to optimising multiple objectives with
NEAT. The algorithm initialises (generation 0) by generating a mini-
mal parent population, computing each parent’s score vector, speci-
ating the population, and then computing a rank for each individual
based on non-dominated sort and crowding distance comparison.
For additional generations, it proceeds as follows:

(1) Apply mutation and crossover to the parent population, pro-
ducing the child population.

(2) Compute each child’s score vector (note parents have already
been scored).

(3) Combine the parent and child population
(4) Speciate the combined population
(5) Compute a rank for each parent based on non-dominated

sort and crowding distance comparison
(6) Select individuals from the combined population (size 2N )

to create the population for the next generation (size N ).
- Selection Phase 1 (Select Species): The combined popula-

tion is traversed, in order of individual rank, to select a list
of species. A limiting function is used during the traversal to
ensure that the list of chosen species is both representative
of the genotypic diversity space and the elitist pareo-optimal
space.
- Selection Phase 2 (Select Individuals): The list of species

is traversed via serial progression in order to select a set of
N individuals to constitute the new parent population. The
serial progression ensures that the list of selected individuals
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Number of Blocks of Size:
Small Medium Large

Environment 1 10 5 0
Environment 2 5 5 5
Environment 3 0 5 10

Table 1: Simulated Task Environments. Environments are numbered
from simplest to most difficult. Small, Medium and Large blocks (resources)
require one, two and three robots, respectively, to be pushed.

Experiment
Set ID Objectives Environments

1 2 3
MO M, T MO1 MO2 MO3
SO T SO1 SO2 SO3

Table 2: Experiment Sets. Experiment sets evolve controller and morphol-
ogy (sensory configuration) for homogenous robot teams in three different
environments (Table 1). In each MO experiment, both Morphological Sim-
plicity M (equation 2) and Task Performance T (equation 1) are maximised.
In each SO experiment, only Task Performance is maximised. Each experi-
ment per set is repeated five times.

is both genotypically diverse and elitist in the context of
pareto-optimality.

(7) Repeat steps 1 to 6.

4 EXPERIMENTAL SETUP
We employ a multi-robot collective gathering simulator [28] for the
experiments. This section provides the simulator configuration as
well as parameter choices for the evolutionary methods which were
used to conduct the experiments1. Two sets of three experiments
are designed. In both sets of experiments, controller-morphology
solutions for collective gathering are evolved for three environ-
ments of increasing difficulty (provided in Table 1). In the first set
of experiments, evolution only maximises a task performance objec-
tive. In the second set of experiments, both task performance and a
morphological simplicity objective are maximised. Each experiment
set is repeated five times.

4.1 Simulated Robot Configuration
Simulated robots constitute the co-operative team solutions which
we evolve for the experiments. Namely, we evolve homogenous
team solutions such that each robot uses the same control policy
and sensory configuration. As in related work [28, 58, 59], the
general morphology for each robot is based on the Khepera III [39]
robot and illustrated in Figure 1. An Artificial Neural Network
(ANN) control policy governs robot behaviour by providing output
values for left and right movement actuators. These values are
computed by input nodes which receive environmental information
from corresponding sensors on the morphology. The number of
sensors can be configured manually or, as in our experiments, via
automatic methods. Notably, we extend the sensory model designed

1The multi-robot simulator, Neuro-evolution methods and source-code used for the
experiments can be found at: https://github.com/rudolfbono/honours-project

by (author?) [28] to include a simulated Ultrasonic Sensor and Low
Resolution Camera for a more accurate model of the actual Khepera
III robot [39]. For a full list of robot specifications used throughout
the experiments, including the comparative advantages of different
sensors, see Table 3. We note that the simulated robots use several
heuristics to reduce the computational complexity of interacting
with the environment [28].

4.2 Environment Configuration
The simulated environment is a (1.0 x 1.0) two-dimensional continu-
ous plane which contains a set of robots, resources and a gathering
zone. Resources are block shapes which vary in size and can be
pushed or pulled by robots. Namely, larger blocks are abstracted
to be heavier and thus require more robots to be moved (values
provided in Table 3). The gathering zone (0.5 x 0.2) is a rectangular
portion of the environment, inside of which re-located blocks are
considered to be ’collected’. For a given run of the simulator, robots
and resources are initially placed at random positions, and with
random orientations, outside of the target area.

We configure the three environments which the experiments are
repeated for such that a simpler environment implies mostly smaller
blocks to be moved and a more difficult environment contains larger
blocks. Table 1 provides the three environment configurations.

4.3 Fitness Functions
In Experiment 1, a single Task Performance objective is maximised,
thereby placing a selection pressure on behavioural competence. In
Experiment 2, both Task Performance and aMinimal Morphological
Complexity objective are maximised. The Minimal Morphological
Complexity objective places an additional selection pressure to-
wards lower morphological complexity, thereby imposing a cost
on morphological complexity. This section provides the fitness
functions for the objectives.

4.3.1 Task Performance. Task Performance (or behavioural com-
petence) is the team fitness of a candidate solution taken as an
average over five simulated task trials of that solution in a given
generation. (author?) [28] define vc as total value of resources in
the gathering zone, vt as total value of all resources in the environ-
ment, se as the number of simulation timesteps elapsed, and st as
number of trial evaluations per individual (n = 5, Table 3). As such,
Task Performance T is maximised according to equation 1:

T = 100 × vc
vt
+ 20 × (1.0 − se

st
) (1)

4.3.2 Minimal Morphological Complexity. Minimal Morpholog-
ical Complexity is defined as a function of the number of sensors
n (n ∈ [0, 10]) on a candidate solution as well as the Field of View
(FOV) value fi and Range value ri of each sensor Si in the set of n
selected sensors. The values fi and ri are constrained by the sensor
type of Si . Namely, ∨Fi and ∧Fi , and ∨Ri and ∧Ri , are the maxi-
mum and minimum possible values of fi and ri , respectively, for
Si ’s sensor type (see Table 3). Thus, Morphological SimplicityM is
maximised according to equation 2:

M = 100 − 5 ×
n∑
i=1

(
fi − ∧Fi
∨Fi − ∧Fi

+
ri − ∧Ri
∨Ri − ∧Ri

)
(2)
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Table 3: Neuro-Evolution and Simulator Paramaters

Neuro-Evolution Paramaters

Generations per experiment 250
Trial evaluations per phenotype 5
Population size 150
ANN connection weight range [−1.0, 1.0]
Sensor Mutation 0.08
Add Sensor Mutation 0.07
Sensor FOV / Range / Bearing / Orientation Perturb Cauchy mutation (0, 5)
Connection weight mutation probability 0.335
Initial Connection Density 0.5
Initial Sensory Input Nodes / Output Nodes 5 / 2
Output Nodes 2
Crossover / Mutation 0.32 / 0.34

Simulation Parameters

Timesteps per simulated trial evaluation 10000
Robot team size 20
Robot size (diameter) / Gripping distance 0.004 / 0.002 (Portion of environment size)
Maximum robot movement per timestep 0.013 (Portion of environment size moved per iteration)
Initial robot / block positions Random (Outside gathering zone)
Environment width x height / Gathering zone size 1.0 x 1.0 / 0.5 x 0.2
Small / Medium / Large block size (Width / Height) 0.01 x 0.01 / 0.015 x 0.015 / 0.02 x 0.02
Ultrasonic sensor Range / FOV (0.0, 1.0] / (0.0,π )
Infrared Proximity Range / FOV (0.0, 0.4] / (π/6, 5π/6)
Colour Sensor Range / FOV (0.0, 0.4] / (π/6, 5π/6)
Low Res Camera Range / FOV (0.0, 0.8] / (π/9, 8π/9)
Bottom Proximity Downward-facing
Sensor Bearing Range [−π ,π ] Radians
Sensor Orientation Range [−π/2,π/2] Radians

• fi − ∧Fi
∨Fi − ∧Fi

is the fraction of total possible FOV used by Si

• ri − ∧Ri
∨Ri − ∧Ri

is the fraction of total possible Range used by Si .

5 RESULTS AND DISCUSSION
This section provides an analysis and discussion of results from the
experiment sets (Table 2) in the context of the hypothesised out-
comes (see Introduction). In the experiments, evolution produced
homogenous team controller-morphology couplings for a collec-
tive gathering task. Specifically, NEAT-M-MODS (multi-objective)
evolved MO solutions with a cost of morphological complexity, and
NEAT-M (single-objective) evolved SO solutions without a cost on
morphological complexity.

5.1 Validation of Hypothesis 0
H0: With a cost on morphological complexity, evolution produces
teams which are less morphologically complex, but at least as compe-
tent for task performance, as teams evolved with no cost on morpho-
logical complexity.

Figure 2 shows the best evolved MO and SO solutions for each
of the three environments with respect to task performance and
morphological simplicity. Namely, the best MO solution for a given

environment was a pareto front of non-dominated trade-off solu-
tions (controller-morphology couplings) and the best SO solution
was a single controller-morphology coupling. As each experiment
was repeated five times (see Table 2), the final pareto front for
each environment was generated via non-dominated sort of the
five evolved pareto fronts for each MO experiment [1]. The best
evolved SO solution was generated by averaging the best SO task
performance and morphological simplicity scores over the five SO
evolutionary runs in each environment.

Validation of H0 required a quantitative metric for comparing
the best SO and MO solutions for each of the three environments.
Namely, it needed to be shown that (1) SO and MO produce equiva-
lent task performance and (2) that MO produces greater morpholog-
ical simplicity than SO. However, there is no generic quantitative
method reported in the literature for selecting the ideal solution
from a pareto front for comparison with a single solution [5].

In a related study, (author?) [5] formulate a metric for compar-
ing pareto fronts to points by combining several proposed methods
from the literature for computing the ideal point on the front, and
showing that each method produces the same conclusion within a
specified margin of error. We adopt a similar approach and compute
the following ideal points for each run of MO (n = 5) in each of the
three environments:

(1) x̄ : Average value of front objectives [5]
5



Environment 1 (MO vs SO) Environment 2 (MO vs SO) Environment 3 (MO vs SO)

SO compared with Task
Performance

Morphological
Simplicity

Task
Performance

Morphological
Simplicity

Task
Performance

Morphological
Simplicity

x̄ SO: [5, 10] MO: [30, 50] SO: [5, 10] MO: [30, 50] SO: [5, 10] MO: [30, 50]
xmax MO: [1, 5] MO: [5, 10] MO: [1, 5] MO: [0, 20] = MO: [20, 30]
xϵ SO: [1, 5] MO: [30, 50] = MO: [30, 50] = MO: [30, 50]
Xknee SO: [0.5, 1] MO: [30, 50] = MO: [30, 50] = MO: [30, 50]

Table 4: Range of differences between best evolved SO solution (average) and set of ideal MO pareto front points for both task performance and morphological
simplicity in three different environments. Best SO Task Performance and Morphological Simplicity are taken as average over five runs of a given SO
experiment. Best set of ideal MO points are computed from a final pareto front resulting from non-dominated sort of the five fronts of each MO experiment.
"=" indicates there was no difference between average SO point and given ideal pareto front point. All tests gave p<0.05 (Shapiro-Wilk test).

Figure 2: Best-evolved MO and SO solutions for each of the three
environments with respect to task performance andmorphological
simplicity. Environments 1, 2 and 3 are blue, orange and red respectively
(1 is simplest, 3 is most difficult). The best MO solution for a given environ-
ment was a pareto front of non-dominated trade-off solutions (controller-
morphology couplings) and the best SO solution was a single controller-
morphology coupling. Lowest attainable morphological simplicity (M = 0,
equation 2) corresponds to a robot body with 10 sensors and the most power-
ful parameters for each sensor. Highest attainable morphological simplicity
(M = 1, equation 2) corresponds to a robot body with no sensors.

(2) xmax : Solution on front with highest task performance [5]
(3) xϵ : Point which maximises morphological simplicity and is

up to 10% lower than xmax for task performance [21]
(4) xknee : The knee point of the front; solution with the highest

value of both objectives [15]
For each environment we conduct an independent samples t-test

to test for a significant difference in task performance between the
five best SO solutions and each point in the set {x̄ ,xϵ ,xmax ,xknee }
for each of the five final pareto fronts. Normality of the data was
confirmed using the Shapiro-Wilk test. Results of the t-tests (shown
in Table 4) indicate that for each environment, SO and MO mean
task performance do not differ statistically by more than 10% (p <
0.05). As the average standard deviation of best task performance
across the five runs of MO and SO was σ=0.1, we accept a difference
of 10% to meet the criteria for approximate equivalence of MO and
SO task performance, thereby satisfying the first condition of H0.
Indeed, exact equivalence is highly unlikely in practice given the
stochastic nature of neuro-evolution [5].

A second set of t-tests (also shown in Table 4) returned a signifi-
cant difference in morphological simplicity between SO and MO in
each environment, showing that MO produces simpler morphology
in all cases (p < 0.05). Namely, the mean difference in morphologi-
cal simplicity between MO and SO is above 30% for the majority of
cases. Thus, MO produces greater morphological simplicity than
SO in all tested cases, which satisfies the final condition of H0.

As such, we conclude that the results provide corroborative evi-
dence for H0; namely that team controller-morphology couplings
evolved with a cost of complexity are morphologically simpler and
as behaviourally competent (that is, produce similar task perfor-
mance) as solutions evolved without a cost on complexity.

These results are consistent with related work [58, 59] which
demonstrates that higher sensory complexity does not necessarily
result in higher task performance for robot teams. It also consistent
with (author?) [4] who show that decreasing mechanical complex-
ity results in higher task performance (note this was shown for a
single robot rather than a team).

Notably, the difference in mean SO and MO task performance
tends towards 0 as the environment increases in difficulty. Specif-
ically, Table 4 indicates that SO produces marginally higher task
performance in simpler environments, but equal task performance
(that is, both methods gathered same amount of resources) in more
difficult environments. The underlying reason for this will be in-
vestigated in future research.

5.2 Validation of Hypothesis 1
H1: Evolution will not respond to increased environmental difficulty
by increasing selection pressure for morphological complexity.

From H0, it follows that with a cost of morphological complex-
ity, evolution produces degrees of morphological simplicity which
are closer to the absolute minimummorphological requirements for
competent behaviour in the given environment than what would be
produced without a cost of complexity. Namely, this indicates that
there is a relationship between morphological complexity and the
environment.2 However, further analysis is necessary to understand

2While we do not provide proof that team morphology is directly influenced by the
environment rather than by the underlying mechanisms of NEAT (such as Complexifi-
cation [55]), our claim is supported by similar work on single-robot systems, in which
a neutral shadow model was employed to prove that morphology is influenced by the
environment even with random selection enabled [5]. In future work we will employ
a neutral shadow model for this measure.
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Figure 3: Progression of Morphological Simplicity produced by MO
and SO in the three environments over evolutionary time (genera-
tions). Lowest attainable morphological simplicity (M = 0, equation 2)
corresponds to a robot body with 10 sensors and the most powerful param-
eters for each sensor. Highest attainable morphological simplicity (M = 1,
equation 2) corresponds to a robot body with no sensors. Note that in Envi-
ronment 1 SO (Experiment SO1, Table 2) evolution converged prior to the
250th generation as maximum task performance was attained.

Figure 4: Average rates at which Mean Morphological Simplicity
changes over evolutionary time for MO and SO in increasingly diffi-
cult environments. Environments are numbered in order of difficulty (see
Table 1). Rates of Change correspond to each of the variables in Figure 3. A
drop in Rate of Change across environments corresponds to lowering of se-
lection pressure for morphological simplicity in response to environmental
difficulty. Comparatively high standard error in SO1 (Table 2) is expected to
be a result of premature convergence (maximum task performance attained).

this relationship across different environments (namely from simple
to more difficult environments). Indeed, related research indicates
that (with no cost of complexity) increased environmental difficulty
does not necessarily equate to a need for higher morphological
complexity [28, 58, 59].

Figure 1 shows the evolutionary progression of morphological
simplicity in the three environments produced by MO (evolution
with a cost of complexity) and SO (no cost on complexity) over 250

generations. Note that experiment SO1 (Table 2) evolved maximum
task performance, and thus converged, prior to the 250th generation
(also that convergence was disabled for MO). We firstly observe
that, for all environments, MO produces simpler morphology over
time while SO produces more complex morphology over time. This
finding is in line with H0; namely that evolution with a cost of com-
plexity places higher selection pressure onmorphological simplicity
than evolution without a cost of complexity.

Moreover, Figure 1 appears to show that MO’s selection pres-
sure for morphological simplicity is approximately the same across
all three environments; namely that an increase in environmental
difficulty does not induce a change in selection pressure for mor-
phological simplicity. On the other hand, SO’s selection pressure for
morphological simplicity differs across the environments over time,
but there appears to be no relationship between morphological
simplicity and environmental difficulty over time.

We investigate these observations further using Figure 4, which
illustrates the average rate of change of morphological simplic-
ity over evolutionary time for MO and SO in each of the three
environments. Figure 4 shows that MO’s rate of change of morpho-
logical simplicity over time is the same in all three environments,
which builds on our observation from Figure 3 that MO selection
pressure for morphological simplicity is the same across environ-
ments. We additionally observe that for SO, the rate of change of
morphological simplicity increases from Environment 1 (simple)
to Environment 2 (medium), but then decreases from Environment
2 (medium) to Environment 3 (hard). This suggests further that
there is no relationship between SO’s selection pressure for team
morphological simplicity and environmental difficulty [28, 58, 59].

Overall, results indicate that for SO there appears to be no rela-
tionship between selection pressure for team morphological sim-
plicity and environmental difficulty3 (as also found in related work
[28, 58, 59]) and that MO (cost of complexity) maintains a constant
selection pressure for team morphological simplicity across envi-
ronments. These findings provide suitable corroborative evidence
for H1; namely that evolution will not respond to increased environ-
mental difficulty by increasing selection pressure for morphological
complexity.

Our finding that evolution with a cost of complexity selects
for simpler team sensory configurations in difficult environments
might appear to be counter-intuitive. Indeed, (author?) [5] find
that individual robots exhibit higher morphological complexity
when evolved in more difficult environments. However, while we
have loosely made use of the term morphological complexity, com-
plexity comes in a number of forms, many of which are inversely
correlated [5]. Indeed, (author?) [5] find that evolution selects for
simpler mechanical (range of mechanical joint motion) complexity
in the same difficult environments that induce high morphological
(triangle mesh body parts) complexity. We propose that lower sen-
sory complexity (the subject of our research) is more desirable for
co-operative robot teams in difficult environments on account of
the high controller (neural) complexity required for the emergence
of co-operative behaviour. Namely, we suggest that competent
co-operative behaviour in difficult environments requires greater

3We note, however, that premature convergence of SO1 may have interfered with this
result.
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evolutionary emphasis on optimising the control policy rather than
optimising for the least expensive morphology. Validation of this
proposition would require controller complexity to be studied in
addition to morphological complexity, and will be the subject of
future work.

6 CONCLUSIONS
This study investigated the impact of imposing a cost of morpho-
logical (sensory) complexity during evolution of sensory-controller
couplings for homogenous robot teams in different environments.
Morphological complexity was a function of the number of sensors
on a given robot, as well as the parameters evolved for each sensor.

Experiments used direct-encoding Neuro-evolution to evolve
team solutions for a benchmark collective behaviour task, requiring
robots to locate and gather resources co-operatively in a range of
environments. Difficult environments contained large resources
which required more robots (greater co-operation) to be pushed
than the smaller resources in simpler environments. A single Task
Performance objective was maximised in the first set of experiments,
while both Task Performance and a Morphological Simplicity objec-
tive (that is, a cost of complexity) were maximised simultaneously
in the second set.

Overall, the results indicated that imposing a cost on morpholog-
ical complexity is beneficial for Multi-Robot System design. It was
firstly found that, in a given environment, adding a cost of mor-
phological complexity leads to simpler team morphology without
sacrificing behavioural competence. This suggests that, for real-
world co-operative robot tasks, competent solutions can be evolved
while also automatically reducing design costs which would have
been spent on unnecessary sensors. It was additionally found that,
with a cost of complexity, evolution maintained a constant selec-
tion pressure for morphological complexity across all environments.
This suggests that, contrary to intuition, robot teams do not require
greater sensory complexity for competent behaviour in increasingly
difficult environments. For real world multi-robot system design,
this could facilitate more economical spending on sensors for task
environments of varying difficulty in which additional sensors are
wrongly expected to be necessary. While additional research is
necessary to understand the underlying reason for this finding,
we suggest that evolution places higher selection pressure on con-
troller than on morphology in order to facilitate the emergence of
co-operative behaviour.

In addition to benefits for Multi-Robot System design, this work
is a preliminary step towards clearer understandings of the coupled
dynamics between control, morphology and the environment in
evolving co-operative systems.

7 FUTUREWORK
While there are many avenues for future research given the prelim-
inary scale of this work and the various types of task environments,
complexity and evolutionary models that can be studied [5], we
propose the following prioritised subjects for future research:

Firstly, we plan to use a neutral shadow model as validation for
the direct influence of the environment on team morphological
complexity which we report in the current work. A neutral shadow

model is a repeated run of a given experiment, except that individ-
uals are selected randomly for each new generation. By comparing
the result of a given experiment to a shadow model of that experi-
ment, it is possible to ascertain whether changes to morphological
complexity were truly a product of environmental influence rather
than due to the underlying mechanisms of the evolutionary method
itself (such as Complexification in NEAT [55]).

Additionally, we plan to investigate complexity of the controller
in addition to complexity of the morphology in homogenous robot
teams. This might help to validate our hypothesis that, with a cost
of complexity, evolution prioritises selection pressure for controller
complexity rather than for morphological complexity to facilitate
the emergence of co-operative behaviour.

Future work should also attempt to reproduce our experiments
using different multi-objective NEAT approaches to NEAT-MODS
[1], such as to replace speciation with a Genotypic Diversity Func-
tion and place NEAT’s selection mechanism under the control of
NSGA-II [16] (as is done in related work [4, 5, 12, 34]).

Lastly, should the researchers have access to the necessary com-
putational resources, future work should attempt to evolve be-
haviourally and morphologically heterogenous (different controllers
and morphologies) rather than homogenous robot teams (same
controller and morphology across team).
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